Sunday, May 12, 2024
HomeNatureThe episodic resurgence of extremely pathogenic avian influenza H5 virus

The episodic resurgence of extremely pathogenic avian influenza H5 virus

[ad_1]

  • Wille, M. & Barr, I. G. Resurgence of avian influenza virus. Science 376, 459–460 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • European Meals Security Authority et al. Avian influenza overview December 2021–March 2022. EFSA J. 20, e07289 (2022).

    PubMed Central 

    Google Scholar
     

  • 2022-2023 detections of extremely pathogenic avian influenza. US Division of Agriculture Animal and Plant Well being Inspection Service https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/animal-disease-information/avian/avian-influenza/2022-hpai (2023).

  • Escalera-Zamudio, M. et al. Parallel evolution within the emergence of extremely pathogenic avian influenza A viruses. Nat. Commun. 11, 5511 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Becker, W. B. The isolation and classification of Tern virus: influenza A-Tern South Africa-1961. J. Hyg. (Lond.) 64, 309–320 (1966).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, H. et al. Institution of a number of sublineages of H5N1 influenza virus in Asia: implications for pandemic management. Proc. Natl Acad. Sci. USA 103, 2845–2850 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • WHO/OIE/FAO H5N1 Evolution Working Group. Continued evolution of extremely pathogenic avian influenza A (H5N1): up to date nomenclature. Influenza Different Respir. Viruses 6, 1–5 (2012).

    Article 

    Google Scholar
     

  • Chen, H. et al. H5N1 virus outbreak in migratory waterfowl. Nature 436, 191–192 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ip, H. S. et al. Excessive charges of detection of clade 2.3.4.4 extremely pathogenic avian influenza H5 viruses in wild birds within the Pacific Northwest through the winter of 2014–15. Avian Dis. 60, 354–358 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Engelsma, M., Heutink, R., Harders, F., Germeraad, E. A. & Beerens, N. A number of introductions of reassorted extremely pathogenic avian influenza H5Nx viruses clade 2.3.4.4b inflicting outbreaks in wild birds and poultry in The Netherlands, 2020–2021. Microbiol. Spectr. 10, e0249921 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • International Consortium for H5N8 and Associated Influenza Viruses.Position for migratory wild birds within the world unfold of avian influenza H5N8. Science 354, 213–217 (2016).

    Article 

    Google Scholar
     

  • Li, Y. T., Su, Y. C. F. & Smith, G. J. D. H5Nx viruses emerged through the suppression of H5N1 virus populations in poultry. Microbiol. Spectr. 9, e0130921 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • van den Model, J. M. A. et al. Wild geese excrete extremely pathogenic avian influenza virus H5N8 (2014–2015) with out scientific or pathological proof of illness. Emerg. Microbes Infect. 7, 67 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leyson, C. M., Youk, S., Ferreira, H. L., Suarez, D. L. & Pantin-Jackwood, M. A number of gene segments are related to enhanced virulence of clade 2.3.4.4 H5N8 extremely pathogenic avian influenza virus in mallards. J. Virol. 95, e0095521 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Lewis, N. S. et al. Emergence and unfold of novel H5N8, H5N5 and H5N1 clade 2.3.4.4 extremely pathogenic avian influenza in 2020. Emerg. Microbes Infect. 10, 148–151 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aguero, M. et al. Extremely pathogenic avian influenza A(H5N1) virus an infection in farmed minks, Spain, October 2022. Euro. Surveill. 28, 2300001 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Puryear, W. et al. Extremely pathogenic avian influenza A(H5N1) virus outbreak in New England seals, United States. Emerg. Infect. Dis. 29, 786–791 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poen, M. J. et al. Co-circulation of genetically distinct extremely pathogenic avian influenza A clade 2.3.4.4 (H5N6) viruses in wild waterfowl and poultry in Europe and East Asia, 2017–18. Virus Evol. 5, vez004 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramos, S., MacLachlan, M. & Melton, A. Impacts of the 2014-2015 Extremely Pathogenic Avian Influenza Outbreak on the US Poultry Sector. Livestock, Dairy, and Poultry Outlook No. (LDPM-282-02) (USDA, 2017).

  • Gass, J. D. Jr et al. International dissemination of influenza A virus is pushed by wild hen migration via arctic and subarctic zones. Mol. Ecol. https://doi.org/10.1111/mec.16738 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Reperant, L. A., Fuckar, N. S., Osterhaus, A. D., Dobson, A. P. & Kuiken, T. Spatial and temporal affiliation of outbreaks of H5N1 influenza virus an infection in wild birds with the 0 levels C isotherm. PLoS Pathog. 6, e1000854 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swieton, E. et al. Sub-Saharan Africa and Eurasia ancestry of reassortant extremely pathogenic avian influenza A(H5N8) virus, Europe, December 2019. Emerg. Infect. Dis. 26, 1557–1561 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Napp, S., Majo, N., Sanchez-Gonzalez, R. & Vergara-Alert, J. Emergence and unfold of extremely pathogenic avian influenza A(H5N8) in Europe in 2016–2017. Transbound. Emerg. Dis. 65, 1217–1226 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, W. et al. Epidemiologic, scientific, and genetic traits of human infections with influenza A(H5N6) viruses, China. Emerg. Infect. Dis. 28, 1332–1344 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gass, J. D. Jr et al. International dissemination of influenza A virus is pushed by wild hen migration via arctic and subarctic zones. Mol. Ecol. 32, 198–213 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Gunther, A. et al. Iceland as stepping stone for unfold of extremely pathogenic avian influenza virus between Europe and North America. Emerg. Infect. Dis. 28, 2383–2388 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pybus, O. G. et al. Unifying the spatial epidemiology and molecular evolution of rising epidemics. Proc. Natl Acad. Sci. USA 109, 15066–15071 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trovao, N. S., Suchard, M. A., Baele, G., Gilbert, M. & Lemey, P. Bayesian inference reveals host-specific contributions to the epidemic enlargement of influenza A H5N1. Mol. Biol. Evol. 32, 3264–3275 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hill, N. J. et al. Ecological divergence of untamed birds drives avian influenza spillover and world unfold. PLoS Pathog. 18, e1010062 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vijaykrishna, D. et al. Evolutionary dynamics and emergence of panzootic H5N1 influenza viruses. PLoS Pathog. 4, e1000161 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Linster, M. et al. Identification, characterization, and pure choice of mutations driving airborne transmission of A/H5N1 virus. Cell 157, 329–339 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wille, M. et al. Evolutionary options of a prolific subtype of avian influenza A virus in European waterfowl. Virus Evol. 8, veac074 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pu, J. et al. Reassortment with dominant hen H9N2 influenza virus contributed to the fifth H7N9 virus human epidemic. J. Virol. 95, e01578-20 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ouoba, L. B. et al. Emergence of a reassortant 2.3.4.4b extremely pathogenic H5N1 avian influenza virus containing H9N2 PA gene in Burkina Faso, West Africa, in 2021. Viruses 14, 1901 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalkauskas, A. et al. Sampling bias and mannequin selection in steady phylogeography: getting misplaced on a random stroll. PLoS Comput. Biol. 17, e1008561 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jimenez-Bluhm, P. et al. Detection and phylogenetic evaluation of extremely pathogenic A/H5N1 avian influenza clade 2.3.4.4b virus in Chile, 2022. Preprint at bioRxiv https://doi.org/10.1101/2023.02.01.526205 (2023).

  • Dashing, C. S., Royle, J. A., Ziolkowski, D. J. Jr & Pardieck, Ok. L. Migratory habits and winter geography drive differential vary shifts of jap birds in response to current local weather change. Proc. Natl Acad. Sci. USA 117, 12897–12903 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McLean, N. et al. Warming temperatures drive at the least half of the magnitude of long-term trait modifications in European birds. Proc. Natl Acad. Sci. USA 119, e2105416119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Z. Y. X. et al. Contrasting results of host species and phylogenetic variety on the incidence of HPAI H5N1 in European wild birds. J. Anim. Ecol. 88, 1044–1053 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, G. et al. Bidirectional motion of rising H5N8 avian influenza viruses between Europe and Asia through migratory birds since early 2020. Mol. Biol. Evol. 40, msad019 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boni, M. F., Galvani, A. P., Wickelgren, A. L. & Malani, A. Financial epidemiology of avian influenza on smallholder poultry farms. Theor. Popul. Biol. 90, 135–144 (2013).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Liu, S. et al. Management of avian influenza in China: methods and classes. Transbound. Emerg. Dis. 67, 1463–1471 (2020).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Lederman, Z. One well being and culling as a public well being measure. Public Well being Ethics 9, 5–23 (2016).

    Article 

    Google Scholar
     

  • Peyre, M. et al. Avian influenza vaccination in Egypt: limitations of the present technique. J. Mol. Genet. Med. 3, 198–204 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, J. et al. Influenza H5/H7 virus vaccination in poultry and discount of zoonotic infections, Guangdong Province, China, 2017–18. Emerg. Infect. Dis. 25, 116–118 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ellis, T. M. et al. Use of avian influenza vaccination in Hong Kong. Dev. Biol. 124, 133–143 (2006).

    CAS 

    Google Scholar
     

  • Grund, C. et al. Extremely pathogenic avian influenza virus H5N1 from Egypt escapes vaccine-induced immunity however confers scientific safety towards a heterologous clade 2.2.1 Egyptian isolate. Vaccine 29, 5567–5573 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic information integration utilizing BEAST 1.10. Virus Evol. 4, vey016 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sagulenko, P., Puller, V. & Neher, R. A. TreeTime: maximum-likelihood phylodynamic evaluation. Virus Evol. 4, vex042 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, G. J. D. et al. Nomenclature updates ensuing from the evolution of avian influenza A(H5) virus clades 2.1.3.2a, 2.2.1, and a pair of.3.4 throughout 2013–2014. Influenza Different Respir. Viruses 9, 271–276 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shepard, S. S. et al. LABEL: quick and correct lineage project with evaluation of H5N1 and H9N2 influenza A hemagglutinins. PLoS ONE 9, e86921 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hadfield, J. et al. Nextstrain: real-time monitoring of pathogen evolution. Bioinformatics 34, 4121–4123 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katoh, Ok. & Standley, D. M. MAFFT a number of sequence alignment software program model 7: enhancements in efficiency and usefulness. Mol. Biol. Evol. 30, 772–780 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a software for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minh, B. Q. et al. IQ-TREE 2: new fashions and environment friendly strategies for phylogenetic inference within the genomic period. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rambaut, A., Lam, T. T., Max Carvalho, L. & Pybus, O. G. Exploring the temporal construction of heterochronous sequences utilizing TempEst (previously Path-O-Gen). Virus Evol. 2, vew007 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chernomor, O. et al. Break up variety in constrained conservation prioritization utilizing integer linear programming. Strategies Ecol. Evol. 6, 83–91 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Ayres, D. L. et al. BEAGLE: an utility programming interface and high-performance computing library for statistical phylogenetics. Syst. Biol. 61, 170–173 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Parker, J., Rambaut, A. & Pybus, O. G. Correlating viral phenotypes with phylogeny: accounting for phylogenetic uncertainty. Infect. Genet. Evol. 8, 239–246 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bielejec, F. et al. SpreaD3: interactive visualization of spatiotemporal historical past and trait evolutionary processes. Mol. Biol. Evol. 33, 2167–2169 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minin, V. N. & Suchard, M. A. Counting labeled transitions in continuous-time Markov fashions of evolution. J. Math. Biol. 56, 391–412 (2008).

    Article 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar
     

  • Bedford, T. et al. International circulation patterns of seasonal influenza viruses range with antigenic drift. Nature 523, 217–220 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minin, V. N., Bloomquist, E. W. & Suchard, M. A. Clean skyride via a tough skyline: Bayesian coalescent-based inference of inhabitants dynamics. Mol. Biol. Evol. 25, 1459–1471 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dellicour, S., Rose, R., Faria, N. R., Lemey, P. & Pybus, O. G. SERAPHIM: learning environmental rasters and phylogenetically knowledgeable actions. Bioinformatics 32, 3204–3206 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCrone, J. T. et al. Context-specific emergence and progress of the SARS-CoV-2 Delta variant. Nature 610, 154–160 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dudas, G. et al. Virus genomes reveal components that unfold and sustained the Ebola epidemic. Nature 544, 309–315 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments