Monday, May 13, 2024
HomeNatureHighest terrestrial 3He/4He credibly from the core

Highest terrestrial 3He/4He credibly from the core

[ad_1]

  • Coltice, N., Moreira, M., Hernlund, J. & Labrosse, S. Crystallization of a basal magma ocean recorded by helium and neon. Earth Planet. Sci. Lett. 308, 193–199 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mukhopadhyay, S. & Parai, R. Noble gases: a report of Earth’s evolution and mantle dynamics. Annu. Rev. Earth Planet. Sci. 47, 389–419 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gonnermann, H. M. & Mukhopadhyay, S. Preserving noble gases in a convecting mantle. Nature 459, 560–563 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tucker, J. M. & Mukhopadhyay, S. Proof for a number of magma ocean outgassing and atmospheric loss episodes from mantle noble gases. Earth Planet. Sci. Lett. 393, 254–265 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Porcelli, D. & Halliday, A. N. The core as a doable supply of mantle helium. Earth Planet. Sci. Lett. 192, 45–56 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vogt, M., Trieloff, M., Ott, U., Hopp, J. & Schwarz, W. H. Photo voltaic noble gases in an iron meteorite point out terrestrial mantle signatures derive from Earth’s core. Commun. Earth Environ. 2, 92 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Roth, A. S. et al. The primordial He price range of the Earth set by percolative core formation in planetesimals. Geochem. Perspect. Lett. 9, 26–31 (2019).

    Article 

    Google Scholar
     

  • Ferrick, A. L. & Korenaga, J. Lengthy-term core–mantle interplay explains W–He isotope heterogeneities. Proc. Natl Acad. Sci. USA 120, e2215903120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng, J. & Du, Z. Primordial helium extracted from the Earth’s core by means of magnesium oxide exsolution. Nat. Geosci. 16, 541–545 (2023).

  • Rizo, H. et al. Preservation of Earth-forming occasions within the tungsten isotopic composition of contemporary flood basalts. Science 352, 809–812 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • White, W. M. Isotopes, DUPAL, LLSVPs, and anekantavada. Chem. Geol. 419, 10–28 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jones, T. D., Sime, N. & van Keken, P. E. Burying Earth’s primitive mantle within the slab graveyard. Geochem. Geophys. Geosyst. 22, e2020GC009396 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Mukhopadhyay, S. Early differentiation and risky accretion recorded in deep-mantle neon and xenon. Nature 486, 101–104 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Stuart, F. M., Lass-Evans, S., Fitton, J. G. & Ellam, R. M. Excessive 3He/4He ratios in picritic basalts from Baffin Island and the position of a blended reservoir in mantle plumes. Nature 424, 57–59 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Starkey, N. A. et al. Helium isotopes in early Iceland plume picrites: constraints on the composition of excessive 3He/4He mantle. Earth Planet. Sci. Lett. 277, 91–100 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Horton, F. et al. Primordial neon in high-3He/4He Baffin Island olivines. Earth Planet. Sci. Lett. 558, 116762 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Biasi, J., Asimow, P. D., Horton, F. & Boyes, X. M. Eruption charges, tempo, and stratigraphy of Paleocene flood basalts on Baffin Island, Canada. Geochem. Geophys. Geosyst. 23, e221GC010172 (2022).

  • Jackson, M. G., Konter, J. G. & Becker, T. W. Primordial helium entrained by the most popular mantle plumes. Nature 542, 340–343 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Willhite, L. N. et al. Scorching and heterogenous high-3He/4He elements: new constraints from proto-iceland plume lavas from Baffin Island. Geochem. Geophys. Geosyst. 20, 5939–5967 (2019).

  • Graham, D. W. et al. Helium isotope composition of the early Iceland mantle plume inferred from the Tertiary picrites of West Greenland. Earth Planet. Sci. Lett. 160, 241–255 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jackson, M. G. et al. Proof for the survival of the oldest terrestrial mantle reservoir. Nature 466, 853–856 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kent, A. J. R. et al. Mantle heterogeneity through the formation of the North Atlantic igneous province: constraints from hint ingredient and Sr–Nd–Os–O isotope systematics of Baffin Island picrites. Geochem. Geophys. Geosyst. 5, Q11004 (2004).

  • Jones, T. D., Davies, D. R. & Sossi, P. A. Tungsten isotopes in mantle plumes: heads it’s optimistic, tails it’s detrimental. Earth Planet. Sci. Lett. 506, 255–267 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Porcelli, D. & Ballentine, C. J. Fashions for distribution of terrestrial noble gases and evolution of the ambiance. Rev. Mineral. Geochem. 47, 411–480 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Workman, R. Ok. & Hart, S. R. Main and hint ingredient composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53–72 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Halliday, A. N. & Canup, R. M. The accretion of planet Earth. Nat. Rev. Earth Environ. 4, 19–35 (2022).

  • Williams, C. D. & Mukhopadhyay, S. Seize of nebular gases throughout Earth’s accretion is preserved in deep-mantle neon. Nature 565, 78–81 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Weiss, B. P., Bai, X.-N. & Fu, R. R. Historical past of the photo voltaic nebula from meteorite paleomagnetism. Sci. Adv. https://doi.org/10.1126/sciadv.aba5967 (2021).

  • Olson, P. L. & Sharp, Z. D. Nebular ambiance to magma ocean: a mannequin for risky seize throughout Earth accretion. Phys. Earth Planet. Inter. 294, 106294 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Thiemens, M. M., Sprung, P., Fonseca, R. O. C., Leitzke, F. P. & Münker, C. Early Moon formation inferred from hafnium–tungsten systematics. Nat. Geosci. 12, 696–700 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, Ok., Lu, X., Liu, X., Zhou, M. & Yin, Ok. Partitioning of noble gases (He, Ne, Ar, Kr, Xe) throughout Earth’s core segregation: a doable core reservoir for primordial noble gases. Geochim. Cosmochim. Acta https://doi.org/10.1016/j.gca.2022.01.009 (2022).

  • Hyung, E. & Jacobsen, S. B. The 142Nd/144Nd variations in mantle-derived rocks present constraints on the stirring fee of the mantle from the Hadean to the current. Proc. Natl Acad. Sci. USA 117, 14738–14744 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Leeuw, G. A. M., Ellam, R. M., Stuart, F. M. & Carlson, R. W. 142Nd/144Nd inferences on the character and origin of the supply of excessive 3He/4He magmas. Earth Planet. Sci. Lett. 472, 62–68 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Broadley, M. W. et al. Identification of chondritic krypton and xenon in Yellowstone gases and the timing of terrestrial risky accretion. Proc. Natl Acad. Sci. USA 117, 13997–14004 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Péron, S., Mukhopadhyay, S., Kurz, M. D. & Graham, D. W. Deep-mantle krypton reveals Earth’s early accretion of carbonaceous matter. Nature 600, 462–467 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Parai, R. A dry historical plume mantle from noble gasoline isotopes. Proc. Natl Acad. Sci. USA 119, e2201815119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan, L. & Steinle-Neumann, G. The helium elemental and isotopic compositions of the Earth’s core based mostly on ab initio simulations. J. Geophys. Res. Strong Earth 126, e2021JB023106 (2021).

  • Li, Y., Vočadlo, L., Ballentine, C. & Brodholt, J. P. Primitive noble gases sampled from ocean island basalts can’t be from the Earth’s core. Nat. Commun. 13, 3770 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bouhifd, M. A., Jephcoat, A. P., Porcelli, D., Kelley, S. P. & Marty, B. Potential of Earth’s core as a reservoir for noble gases: case for helium and neon. Geochem. Perspect. Lett. 15, 15–18 (2020).

  • Heber, V. S. et al. Isotopic mass fractionation of photo voltaic wind: proof from quick and sluggish photo voltaic wind collected by the Genesis mission. Astrophys. J. 759, 121 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Faure, P. et al. Uranium and thorium partitioning within the bulk silicate Earth and the oxygen content material of Earth’s core. Geochim. Cosmochim. Acta 275, 83–98 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mundl-Petermeier, A. et al. Temporal evolution of primordial tungsten-182 and 3He/4He signatures within the Iceland mantle plume. Chem. Geol. 525, 245–259 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mundl-Petermeier, A. et al. Anomalous 182W in excessive 3He/4He ocean island basalts: fingerprints of Earth’s core? Geochim. Cosmochim. Acta 271, 194–211 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ranta, E. et al. Historical and recycled sulfur sampled by the Iceland mantle plume. Earth Planet. Sci. Lett. 584, 117452 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kurz, M. D., Jenkins, W. J. & Hart, S. R. Helium isotopic systematics of oceanic islands and mantle heterogeneity. Nature 297, 43–47 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hoffman, N. R. A. & McKenzie, D. P. The destruction of geochemical heterogeneities by differential fluid motions throughout mantle convection. Geophys. J. Int. 82, 163–206 (1985).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hart, S. R., Kurz, M. D. & Wang, Z. Scale size of mantle heterogeneities: constraints from helium diffusion. Earth Planet. Sci. Lett. 269, 508–517 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Ok., Brodholt, J. & Lu, X. Helium diffusion in olivine based mostly on first ideas calculations. Geochim. Cosmochim. Acta 156, 145–153 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cherniak, D. J., Thomas, J. B. & Watson, E. B. Neon diffusion in olivine and quartz. Chem. Geol. 371, 68–82 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schaefer, B. F., Turner, S., Parkinson, I., Rogers, N. & Hawkesworth, C. Proof for recycled Archaean oceanic mantle lithosphere within the Azores plume. Nature 420, 304–307 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Atreya, S. Ok., Mahaffy, P. R., Niemann, H. B., Wong, M. H. & Owen, T. C. Composition and origin of the ambiance of Jupiter—an replace, and implications for the extrasolar big planets. Planet. House Sci. 51, 105–112 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Moreira, M. A. & Kurz, M. D. In The Noble Gases as Geochemical Tracers. Advances in Isotope Geochemistry (ed. Burnard, P.) 371–391 (Springer, 2013).

  • McDonough, W. F. & Solar, S. S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kurz, M. D. et al. Correlated helium, neon, and soften manufacturing on the super-fast spreading East Pacific Rise close to 17°S. Earth Planet. Sci. Lett. 232, 125–142 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kurz, M. D., Curtice, J., Fornari, D., Geist, D. & Moreira, M. Primitive neon from the middle of the Galápagos hotspot. Earth Planet. Sci. Lett. 286, 23–34 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Patterson, D. B., Farley, Ok. A. & McInnes, B. I. A. Helium isotopic composition of the Tabar–Lihir–Tanga–Feni island arc, Papua New Guinea. Geochim. Cosmochim. Acta 61, 2485–2496 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Scarsi, P. Fractional extraction of helium by crushing of olivine and clinopyroxene phenocrysts: results on the 3He/4He measured ratio. Geochim. Cosmochim. Acta 64, 3751–3762 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Abouchami, W., Galer, S. J. G. & Koschinsky, A. Pb and Nd isotopes in NE Atlantic Fe–Mn crusts: proxies for hint steel paleosources and paleocean circulation. Geochim. Cosmochim. Acta 63, 1489–1505 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Todt, W., Cliff, R. A., Hanser, A. & Hofmann, A. W. In Earth Processes: Studying the Isotopic Code (eds. Basu, A. & Hart, S.) 429-437 (American Geophysical Union, 1996).

  • Dickin, A. P. Radiogenic Isotope Geology (Cambridge Univ. Press, 2018).

  • Maltese, A. & Mezger, Ok. The Pb isotope evolution of bulk silicate Earth: constraints from its accretion and early differentiation historical past. Geochim. Cosmochim. Acta 271, 179–193 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Horton, F., Farley, Ok. & Jackson, M. Helium distributions in ocean island basalt olivines revealed by X-ray computed tomography and single-grain crushing experiments. Geochim. Cosmochim. Acta 244, 467–477 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yatsevich, I. & Honda, M. Manufacturing of nucleogenic neon within the Earth from pure radioactive decay. J. Geophys. Res. Strong Earth 102, 10291–10298 (1997).

    Article 
    CAS 

    Google Scholar
     

  • McDonough, W. F. Compositional mannequin for the Earth’s core. Treatise Geochem. 2, 547–568 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Leya, I. & Wieler, R. Nucleogenic manufacturing of Ne isotopes in Earth’s crust and higher mantle induced by alpha particles from the decay of U and Th. J. Geophys. Res. Strong Earth 104, 15439–15450 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Cox, S. E., Farley, Ok. A. & Cherniak, D. J. Direct measurement of neon manufacturing charges by (α, n) reactions in minerals. Geochim. Cosmochim. Acta 148, 130–144 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments